by Wensdy Whitehead

Shovel folding techniques provide a system atic approach to box-pleating to allow quick 3D origam i design of line drawings without m assive collapses. It is a fam ily of related origam i techniques that work very powerfully together. It includes basic shovel folds, inverse shovel folds, half shovel folds, half inverse shovel folds, sliding shovel folds, hesitating shovel folds, null shovel folds and a comer-tuming" procedure. The various types of shovel falds work together in sequence across pleated paper, generating three-dim ensional structures seen edge-on, rather like a line drawing with three-dim ensional ink hanging in m id air. Inverse techniques create the sam e structures as their non-inverse counterparts but in reverse, causing the working end of the developing m odel to becom e narrower rather than wider. This sequential and com plem entary nature allows a very algorithm ic approach to design, including subroutines for all the capital letters of the English alphabet. These subroutines provide enough power that the total design time for eight new words for an exhibit was under five m inutes and the first execution of all eight designs were display quality. This paper will address the underlying shovel folds, however, rather than specific subroutines built upon them .

The techniques of shovel folding are not inordinately difficult. Interm ediate folders with precision and patience can handle all the folding techniques required; most m odels developed under this m ethod will be interm ediate or high interm ediate.

Shovel folding starts on any grid. Powers of two (2) are particularly handy as grid dim ensions, so the following explanations use 12 paper with an 8×16 grid to illustrate the techniques. Start with the long eighths other than the half folded.

Basic Shovel Fold

The basic shovel fold gives the fam ily of techniques its nam e. Repeated application can create the same result as an Elias stretch. This breakdown makes it easier to reposition the stretch or stop partway. The shovel fold starts from the center of the stretch rather than the outside ends. There is no additional difficulty if the center of the stretch is off-center or positioned at any particular distance from the end. After each shovel fold, the paper is ready for the next.
1.

This end will be the scoop of the shovel.

Rabbit-ear. Leave the ear upright (rather than folding it down to either side).

$$
2 .
$$

The ear flap is standing upright, so only the end edge-on is visible here, shown by a thick line. If seen from the long side, it would look as in 2 © . From the end, it would only be edges.

On the side without the ear flap, pick up all the edges along the center and open outwards like opening cupboard doors, but the paper is trapped at one end and gets pulled around. When the doors open about 90°, the paper looks like a coal shovel, as shown in diagram $3 \frac{1}{2}$. (This is the stereotypical form, but the handle of the shovel could be either com plex or m issing.) Fully open the doors 180°. It is possible to see a shovel fold two different ways. If the scoop of the shovel is stable, the handle of the shovel (ear flap from the rabbit-ear) is pulled around. If the handle (ear flap) is stable, the scoop flips over. Both feel the sam e when folding in the air, but the latter perspective leaves the paper ready for the next shovel fold, whereas the form er requires tuming the paper over afterward. The latter cuts down considerably on the num ber of diagram s. Just this once, this introduction uses the form er in order to show both sides of the result.
4.

First, step 4 shows the result from the side with the rabbit ear as if the scoop of the shovel rem ained stable and the handle swung around. At first, it m ay seem m ore natural to keep the m ajority of the paper steady. Working across the paper with a sequence shovel folds, this shifts until the whole scoop is used up, making it natural for the scoop to m ove rather than the handle. This view provides consistency and keeps the m ind focused on the part of the paper that changes.

5. | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\(\left|\begin{array}{l|l|l|l|l|l|l|}\hline \& \& \& \& \& \&

\hline\end{array}\right|\)

The paper is ready for the next basic shovel fold (or many of the variants), but the intemal edges no longer run down the center of the paper. Instead they are located to either side, one grid square from each long edge. Actually, one grid square from the edge is exactly the same location that they were the first tim ewhen the center was one grid square from the edge. Now the paper is wider.
6.

A second shovel fold works just like the first, but there is a gap between the inner edges.
$6 \frac{1}{2}$.

Partway through the second basic shovel fold, the paper again looks like a shovel but wider and one grid square shorter. From here, continue to open the sides as before, flipping the scoop around.

View from the flip side.
Again the result is ready for the next shovel fold, which would com plete the Elias stretch and use the full width of the paper.

Inverse Shovel Fold

An inverse shovel fold creates exactly the sam e structure as a shovel fold, but it attacks the problem from the other direction. Instead of spreading a pleat, it takes an unfolded and retums an end to a pleated state. Like the basic shovel fold, a series of inverse shovel folds can perform an Elias stretch step by step. An inverse shovel fold could start a sequence, however it usually occurs after one or m ore non-inverse shovel folds, so the following exam ple continues from above.

Valley fold to get the paper ready for the first inverse shovel fold. If the design calls for it, a space m ay be left by skipping crease lines or m ultiple pleats m ay be m ade. This is the m ost com m on option however.

Like the basic shovel fold, one inverse shovel fold leaves the paper ready for the next inverse shovel fold. The paper is narrower, but otherwise, it is the same fold.

View from the flip side.

The inverse shovel fold brings the long sides in while flipping the end back where it came from on the next crease. It is easiest to start by m aking the 45° valley folds bisecting the comers. This pulls the paper into a useful shape to
9.

The series of shovel folds started from a rabbit-ear; the series of inverse shovel folds is the sam e thing working backwards, so it ends in the very sam e rabbit-ear. As before, leave the ear upright (rather than folding it down to either side).

Shovel folding is convenient for m odels of line drawings such as stick figures, num bers, letters and other sym bols. The lines should generally be neat and clean and even, not tapering off here and there in little points. The ends could have been m ade square by adding a pleat in the shift from shovel folds to inverse shovel folds, but that would be neither convenient nor efficient. It's better to pull out a bit of paper that's hidden inside. Here it can open flat like a book.

Pull out the colorful triangles while refolding the pleat unfolded in the previous step.

The ends are squared off with little effort and no allocation of extra paper. This works in quite a few places with shovel folds, though where half shovel and half inverse shovel folds occur, the back does not open flat, but it is easy to peek inside to pull out the triangles.

Starting Another Sequence of Shovel Folds

After those inverse shovel folds, m ore shovel folds are needed; m ost m odels are m ore com plex than an 'X,' 'T' or sword. The center of the new sequence need not be the same as the center of the preceding sequence. It is not possible to open the pleats flat to put in another new rabbit-ear, but it is possible to to peek inside and hold the paper open long enough to m ake that rabbit-ear. For dem onstration, continue from the end of the inverse shovel folding exam ple (14).

Peek inside by opening the pages of the pleat. Any layer from either side is appropriate, but an exam ple m ust pick one, so start with the colorful side of the paper up and open such that one edge (or page) goes down and three go up. This starts a shovel fold off-center.

Rabbit-ear. Leave the ear upright (rather than folding it down to either side). The ear has a com plex structure attached. The rabbit-ear could be at any pleat including the next one, elm inating the horizontal valley fold. The distance is not significant to the ability to shovel fold.

There is also the special case where the next series of shovel folds has the same center as the preceding series. Rather than peeking inside and holding the paper open, it is sim pler to m ake both the closing and opening rabbit-ears sim ultaneously. The new creases look a bit like a barbell, since the same portion of the paper is the ear section of both rabbit-ears. In that way, this "barbell fold" is just a set of conjoined rabbit-ears. To do this, replace step 10 with 10a.

The paper is again ready to tum over and start shovel folding. It is set up for an off-centered shovel fold.

Half Shovel Folds

Centered shovel folds spread the paper out sym m etrically, but asym m etry is useful, too. A shovel fold that starts off-center can break the sym m etry once it reaches the edge. One side will lack the paper for another shovel fold, but the other side is ready for its half. Fortunately, the sequence can easily continue with half shovel folds.

For the following illustrative exam ple, start with another 8×16 grid, but om it the long quarter rather than the half.
1b.

Rabbit-ear. Leave the ear upright (rather than folding it down to either side).

The ear flap is standing upright, so only the edge is visible here, shown by a thick line. If seen from the long side, it would look as in 2 b ©. From the end, it would only be edges.

There is still paper for the full version of the basic shovel fold.
$4 b$.

This tim e there is only one edge that can be pulled outward. This is the half shovel fold. It works just like the basic shovel fold, but operates on just one side instead of both sides.

5b.

The result of the first half shovel fold is ready for another half shovel fold. With each basic shovel fold, the paper becom es two grid squares wider; with each half shovel fold, it becom es one grid square wider.

6 b.

7b.

The second half shovel fold brings the width up to six grid squares, whence it would be possible to retum to pleats with two inverse shovel folds. In fact, the inverse shovel fold can also be halved, so it would be possible to start backing up towards m ore pleats and narrower paper from an odd width, not just an even one. \mathbb{t} is also possible to continue with half shovel folds until the paper is com pletely spread out.
Because a half shovel fold only spreads out one pleat instead of two for a full shovel fold, this will eat m ore length than it did to reach the edge of the paper in the basic shovel fold exam ple.

Half Inverse Shovel Folds

Inverse shovel folds split just as readily in half as the basic version. Half inverse shovel folds balance half shovel folds. To set up for the following exam ple, fold through step 4b in the section of half shovel folds.

A half inverse shovel fold is just a onesided inverse shovel fold. The valley fold that was in the center of the full version now extends to one edge. Notice that the half inverse shovel fold brings in the other edge (not the one the half shovel fold was spreading open).

After one half inverse shovel fold, the paper is ready for the full version - or for a half inverse shovel fold on either long side. Here is the full version, to show how these folds mix.

7c.

As with the full version, a rabbit-ear finishes the re-pleating of the end. Now it is interesting to see the paper edge-on.

\xrightarrow{m}
New
view.

Because the half shovel and half inverse shovel folds used opposite sides of the paper, the pleat is off-set. This is very useful. Com bined with the sliding shovel fold, it becom es m ore flexible.

Sliding Shovel Fold

A sliding shovel fold is a half shovel fold plus a half inverse shovel fold perform ed sim ultaneously. One side spreads out a pleat while the other side refolds a pleat with no net change in width, but the offset that was observed at the end of the half inverse shovel fold exam ple increases. A half shovel fold and a half inverse shovel fold bracket a series of zero or m ore sliding shovel folds to produce an offset. The offset measured in grid squares will be one greater than the num ber of sliding shovel folds. For the following exam ple, fold through step 2 b .

3d.

3¹2 2 d .

Start with a half shovel fold to set up for the sliding shovel fold. Notice that a full shovel fold need not precede a half shovel fold.

4d®.

View from the flip side.

The sliding shovel fold com bines a half shovel fold and a half inverse shovel fold.

5d®.

View from the flip side.

The sliding shovel fold leaves the paper ready for another sliding shovel fold.

6d@.

The half inverse shovel fold could have come after the previous sliding shovel fold or after the half shovel fold itself. It would also be possible to continue. Closing up before the edge leaves a triangle to pull out as in steps 12-14, though the paper will not open flat. Because there were an even num ber of sliding shovel folds, the triangles will be accessible from the sam e side of the m odel. If there were an odd num ber of shovel folds, they would be accessible from opposite sides.

Hesitating Shovel Fold

A hesitating shovel fold starts to bring the sides inward like an inverse shovel fold, but halfway through it backs out. This helps reverse direction from inverse shovel folds to basic shovel folds spreading the paper. However, an inverse shovel fold could follow instead. Repeating a hesitating shovel fold is useful to create multiple short flaps. Like the basic and inverse shovel folds, the hesitating shovel fold can also be applied to just one side and com bined with either a half shovel or half inverse shovel fold on the other side of the paper. Fuller exploration of the various com binations is left as an exercise for the reader.

From here, it would be possible to spread the paper with another shovel spread the paper with another shovel
fold. To repeat hesitating shovel folds, so just do a valley fold as shown to prepare for the next one.
Start by folding through step 7 of the inverse shovel fold exam ple. Seen all together, the folds of a hesitating shovel fold clearly relate to other shovel folds, but they are easier to im plem ent as first a valley fold then two inside-reverses.

9 e.

Null Shovel Fold

The preceding series of shovel folds always started and ended with m atching rabbit-ears. Shovel folds and half shovel folds spread the paper from the rabbitear which is already two grid squares wide, so these sequences always end up spreading the paper to at least three grid squares. To keep the width down to the two initial grid squares, elim inate the sequence shovel folds between the m atching rabbit-ears. In essence, it becom es a sequence of length zero-a null sequence.

To try out the exam ple below, fold to step 2 of the basic shovel fold.

There is no need to tum the paper over, just add the closing rabbitear, again leaving the ear upright.

The two upright ears and their bases abut, though a gap also has a useful effect.

Close back up, pulling out the triangles. Include all layers.

5 f.

Since the triangles were pulled out as in step 25a after the m atching basic shovel and inverse shovel folds, all the ends should be square, as in the other view.

The Corner Turning Maneuver

The comer tuming m aneuver is the oddball of shovel folding, but it is a vital com ponent. So far, all the sequences of shovel folds have expanded the paper in both directions by at least one grid square. The comer tuming procedure defies that balance. For the following illustrative exam ple, start with another 8×16 grid, but om it the long quarter rather than the half as for the half shovel fold exam ple.

Rabbit-ear. Leave the ear upright (rather than folding it down to either side).

All shovel folding happens on a grid. A larger grid allows m ore resolution, but doubling the resolution doubles the work and thickness of pleated paper.

A little extra resolution can be pulled from the grid without actually increasing the overall resolution. While working across the paper with shovel folds, there are points at which the grid could be realigned. When there is any opportunity to skip a grid square (as when skipping squares or starting another sequence) it is possible to skip a fractional square. There need to be pleats at the new position of the grid, so it is best to plan ahead. This can be used to filt a design to a handier dim ension of grid, such as 8×16 instead of 8×17.

An exam ple of offsetting part of the grid in the m iddle. The shovel folding sequence for this m odel will realign to this grid and shortly afterward realign again to the original grid. Halving the pleats is the easiest offset to create in the middle of a grid spanning the whole paper.

The End Loop

The end loop is a handy little trick to create a hollow loop at the end of the paper using basic shovel folds.. The lock is sturdy enough to link two pieces of paper. For this exam ple start with the a 8×16 grid on 12 , pleated the long way except for the half, sam e as for the basic shovel fold.

1h.

This end will be the loop.

Dog-ear the comers at the end that will form the loop. One dog-ear is m ountain and the other is valley. The one which is valley should leave a tiny fudge factor to accom m odate the thickness of the paper.
$2 h$.

This end will be the loop.

Dog-ear the comers at the end that will form the loop. One dog-ear is m ountain and the other is valley. The one which is valley should leave a tiny fudge factor to accom m odate the thickness of the paper.

Rabbit-ear. Leave the ear upright (rather than folding it down to either side). If w is the width m easured in grid squares, then $\mathrm{d}=(\mathrm{w} / 2)-1$.

The loop can be shaped however you please, such as round, teardrop, heart or star. The length of the loop is $w-2$ grid squares. This is an easy shovel-folding way to m ake a fairy-godm other-style m agic wand. To finish off the wand, just lock the end.

Locking the End

These pleats like to splay out at the end. It is easy to lock the layers of paper together and keep the lock hidden. Lets finish off the wand from the end loop exam ple by locking the other end. Fold through step 12h above.
13h.

14h.

Dog-ear the inner layers together. \mathbb{t} is that simple. For a looser lock, dog-ear those layers individually.

Skipping Squares

So far each shovel fold followed in the next pleat, but it is also possible to skip one or m ore squares. This is usefil to create round or square elem ents efficiently.

Fold through step 4. Valley fold to get the paper ready for an inverse shovel fold.
$7 i$.

As usual, close up with a rabbit-ear and leave the ear upright.

6 i.

Inverse shovel fold.

8i.

Unfold the pleat folded in step 5i. Without it, the existing rabbit-ear would have been in the way.

9i.

Stand the sides upright, form ing a box.

The box is one grid square deep. The upper edge can be shaped to m ake it rather round. Slightly crushing the comers can increase the effect.

In Conclusion

These few techniques work together for a wealth of designs and sub designs. A sequence can be reused in other places, like a subroutine and greatly reduce design tim e and effort once developed and leamed or in som e cases im m ediately in the sam e m odel if it has repetitive parts. It is m ost useful for line-drawing style designs, but with a little im agination yields other results too, such as a Bottom less Cup of Coffee.

